做销售的 都有什么网站,手机网站建设在哪儿,韩国小清新网站模板,考试系统 微网站是什么样的Matlab肺结节分割(肺结节提取)源程序#xff0c;也有GUI人机界面版本。
使用传统图像分割方法#xff0c;非深度学习方法。
使用LIDC-IDRI数据集。
工作如下#xff1a;
1、读取图像。
读取原始dicom格式的CT图像#xff0c;并显示#xff0c;绘制灰度直方图#xff1b;
…Matlab肺结节分割(肺结节提取)源程序也有GUI人机界面版本。 使用传统图像分割方法非深度学习方法。 使用LIDC-IDRI数据集。 工作如下 1、读取图像。 读取原始dicom格式的CT图像并显示绘制灰度直方图 2、图像增强。 对图像进行图像增强包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化 3、肺质分割。 基于阈值分割从原CT图像中分割出肺质 4、肺结节分割。 肺质分割后进行特征提取计算灰度特征、形态学特征来分割出肺结节 5、可视化标注文件。 读取医生的xml标注文件可视化出医生的标注结果 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中红框内为主函数可以直接运行其他文件均为函数或数据。最近在研究肺结节分割相关的课题今天就来给大家分享一下使用Matlab实现基于传统图像分割方法非深度学习利用LIDC - IDRI数据集完成肺结节分割的全过程并且还打造了GUI人机界面版本哦方便又实用。1. 读取图像首先要读取原始dicom格式的CT图像。在Matlab里我们可以使用dicomread函数轻松搞定。代码如下% 读取dicom图像 img dicomread(your_dicom_file.dcm); % 显示图像 imshow(img, []); % 绘制灰度直方图 imhist(img);代码分析第一行dicomread函数接收dicom文件路径作为参数读取图像数据并赋值给img变量。第二行imshow函数负责显示图像[]在这里的作用是让Matlab自动根据图像数据调整显示的灰度范围。第三行imhist函数绘制图像的灰度直方图帮助我们直观了解图像灰度分布情况。2. 图像增强Gamma矫正Gamma矫正可以调整图像的亮度和对比度代码如下gamma 0.5; % 设置gamma值 img_gamma imadjust(img, [], [], gamma);代码分析先定义了gamma值这里设为0.5代表矫正的强度。imadjust函数对原图像img进行调整[]表示使用默认的输入和输出范围最后一个参数gamma就是我们设置的矫正系数。直方图均衡化img_equalized histeq(img);代码分析histeq函数直接对图像img进行直方图均衡化处理将图像的灰度级均匀分布从而增强图像对比度。中值滤波img_median medfilt2(img, [3 3]);代码分析medfilt2函数用于二维中值滤波[3 3]是指定的滤波窗口大小也就是3x3的窗口它能有效去除图像中的椒盐噪声。边缘锐化h fspecial(unsharp); img_sharp imfilter(img, h);代码分析fspecial函数创建一个“unsharp”类型的滤波器这个滤波器用于边缘锐化。然后imfilter函数将这个滤波器应用到原图像img上得到锐化后的图像img_sharp。3. 肺质分割基于阈值分割来从原CT图像中分割出肺质。% 手动设置一个合适的阈值这里只是示例实际可能需调整 threshold 100; bw img threshold;代码分析先设定一个阈值threshold这里设为100但实际应用中要根据图像特点调整。然后通过比较运算img threshold将大于阈值的像素设为1白色小于等于的设为0黑色得到二值图像bw完成初步的肺质分割。4. 肺结节分割在肺质分割后进行特征提取通过计算灰度特征、形态学特征来分割出肺结节。% 灰度特征计算示例比如计算平均灰度 mean_gray mean2(img(bw)); % 形态学特征提取以面积为例 [labeled, num] bwlabel(bw, 8); stats regionprops(labeled, Area);代码分析第一行mean2函数计算肺质区域img(bw)的平均灰度值。第二行bwlabel函数对二值图像bw进行标记8表示使用8连通区域标记返回标记后的图像labeled和区域数量num。第三行regionprops函数计算标记区域的属性这里选择计算“Area”面积属性便于后续通过面积等形态学特征筛选出肺结节。5. 可视化标注文件读取医生的xml标注文件可视化出医生的标注结果。% 假设这里有个函数parse_xml来解析xml文件获取标注信息 [annotations] parse_xml(your_xml_file.xml); % 这里简单假设annotations包含标注位置等信息在图像上绘制标注 for i 1:size(annotations, 1) % 根据标注信息获取坐标等这里假设获取到x,y坐标和半径r x annotations(i, 1); y annotations(i, 2); r annotations(i, 3); rectangle(Position, [x - r, y - r, 2 * r, 2 * r], EdgeColor,r); end代码分析先调用假设的parse_xml函数解析xml文件获取标注信息存到annotations里。然后通过循环遍历每个标注从annotations里获取坐标和半径等信息使用rectangle函数在图像上绘制红色矩形来表示标注位置。6. 计算IOU、DICE、PRE三个参数评价分割效果好坏% 假设这里有分割结果图像bw_seg和真实标注二值图像bw_true % 计算交集 intersection sum(bw_seg bw_true, all); % 计算并集 union_set sum(bw_seg | bw_true, all); % 计算IOU iou intersection / union_set; % 计算DICE dice 2 * intersection / (sum(bw_seg, all) sum(bw_true, all)); % 计算PRE这里假设bw_seg为预测结果bw_true为真实结果计算准确率 tp sum(bw_seg bw_true, all); fp sum(bw_seg ~bw_true, all); pre tp / (tp fp);代码分析首先通过逻辑与运算计算分割结果和真实标注的交集逻辑或运算计算并集从而得出IOU。接着通过交集以及分割结果和真实标注中前景像素总和计算DICE。最后通过真阳性tp和假阳性fp计算准确率PRE。7. 做成GUI人机界面这部分主要利用Matlab的GUIDE工具来创建交互式界面。在GUIDE里可以方便地拖拽各种组件比如按钮、文本框、图像显示区域等。然后为每个组件编写回调函数实现相应功能。例如为“读取图像”按钮编写回调函数在点击按钮时执行读取图像的代码。虽然这里不详细展开GUIDE的使用但思路就是通过它将前面实现的各个功能整合到一个友好的界面里。在整个项目的两个版本程序中红框内为主函数可以直接运行其他文件均为函数或数据分工明确便于管理和维护。希望这篇博文能给同样在研究肺结节分割的小伙伴们一些启发和帮助呀