网站推广排名哪家公司好宁波 住房和建设局网站首页

张小明 2026/1/14 14:35:21
网站推广排名哪家公司好,宁波 住房和建设局网站首页,中国建设领域专业人员网站,黄渡网站建设主页#xff1a;http://qingkeai.online/ 原文#xff1a;https://mp.weixin.qq.com/s/lfkwxQ-7N2jdVaOFAN5GmQ 随着基于大规模模仿学习的视觉-语言-动作 (VLA) 模型取得显著进展#xff0c;将 VLA与强化学习 (RL)相结合已成为一种极具前景的新范式。该范式利用与环境的试错…主页http://qingkeai.online/原文https://mp.weixin.qq.com/s/lfkwxQ-7N2jdVaOFAN5GmQ随着基于大规模模仿学习的视觉-语言-动作 (VLA) 模型取得显著进展将VLA与强化学习 (RL)相结合已成为一种极具前景的新范式。该范式利用与环境的试错交互或预先采集的次优数据进一步提升机器人的决策与执行能力。本文对该领域的关键论文进行了分类整理涵盖离线RL、在线RL、世界模型、推理时RL及对齐技术。一、 离线强化学习 (Offline RL)离线 RL 预训练的 VLA 模型利用人类演示和自主收集的数据进行学习无需实时环境交互。Q-Transformer: Scalable Offline Reinforcement Learning via Autoregressive Q-Functions链接https://arxiv.org/abs/2309.10150 代码https://github.com/google-deepmind/q_transformerOffline Actor-Critic Reinforcement Learning Scales to Large Models (Perceiver-Actor-Critic)链接https://arxiv.org/abs/2402.05546 代码https://offline-actor-critic.github.io/GeRM: A Generalist Robotic Model with Mixture-of-experts for Quadruped Robot链接https://arxiv.org/abs/2403.13358 代码https://github.com/Improbable-AI/germReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning链接https://arxiv.org/abs/2505.07395MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models链接https://arxiv.org/abs/2503.08007CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning链接https://arxiv.org/pdf/2508.02219Balancing Signal and Variance: Adaptive Offline RL Post-Training for VLA Flow Models (ARFM)链接https://arxiv.org/pdf/2509.04063二、 在线强化学习 (Online RL)通过在环境中的试错交互进一步优化 VLA 模型的性能。1. 仿真环境内 (In Simulator)FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning链接https://arxiv.org/abs/2409.16578 代码https://github.com/flare-vla/flarePolicy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone (PA-RL)链接https://arxiv.org/abs/2412.06685 代码https://pa-rl.github.io/Improving Vision-Language-Action Model with Online Reinforcement Learning (iRe-VLA)链接https://arxiv.org/abs/2501.16664Interactive Post-Training for Vision-Language-Action Models (RIPT-VLA)链接https://arxiv.org/abs/2505.17016 代码https://github.com/OpenHelix-Team/RIPTVLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning链接https://arxiv.org/abs/2505.18719 代码https://github.com/vla-rl/vla-rlWhat Can RL Bring to VLA Generalization? An Empirical Study (RLVLA)链接https://arxiv.org/abs/2505.19789 代码https://github.com/S-S-X/RLVLARFTF: Reinforcement Fine-tuning for Embodied Agents with Temporal Feedback链接https://arxiv.org/abs/2505.19767SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning周六上午10点一起聊聊VLA强化学习训练框架SimpleVLA-RL链接https://arxiv.org/pdf/2509.09674 代码https://github.com/SimpleVLA/SimpleVLATGRPO: Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization链接https://arxiv.org/abs/2506.08440 代码https://github.com/TGRPO/TGRPOOctoNav: Towards Generalist Embodied Navigation链接https://arxiv.org/abs/2506.09839 代码https://octonav.github.io/RLRC: Reinforcement Learning-based Recovery for Compressed Vision-Language-Action Models链接https://arxiv.org/pdf/2506.17639 代码https://rlrc-vla.github.io/RLinf: Reinforcement Learning Infrastructure for Agentic AI下周二晚8点和无问芯穹首席研究员林灏一起聊聊具身智能 RL 训练框架 RLinf 的系统设计链接https://arxiv.org/pdf/2509.15965 代码https://rlinf.github.io/RLinf-VLA: A Unified and Efficient Framework for VLARL TrainingVLARL 算法如何设计从零上手 OpenVLA 的强化学习微调实践链接https://arxiv.org/pdf/2510.06710v12. 真实世界 (In Real-World)RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning链接https://arxiv.org/abs/2412.09858 代码https://rldg.github.io/Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone链接https://arxiv.org/abs/2412.06685 代码https://github.com/MaxSobolMark/PolicyAgnosticRLImproving Vision-Language-Action Model with Online Reinforcement Learning链接https://arxiv.org/abs/2501.16664ConRFT: A Reinforced Fine-tuning Method for VLA Models via Consistency Policy链接https://arxiv.org/abs/2502.05450 代码https://github.com/ConRFT/ConRFTVLAC: A Vision-Language-Action-Critic Model for Robotic Real-World Reinforcement Learning链接https://arxiv.org/abs/2509.15937 代码https://github.com/VLAC-VLA/VLACSelf-Improving Embodied Foundation Models (Generalist)链接https://arxiv.org/pdf/2509.15155三、 世界模型 (World Model / Model-Based RL)利用世界模型作为虚拟环境实现低成本、安全的 VLA 策略后训练。World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training链接https://arxiv.org/abs/2509.24948 代码https://github.com/amap-cvlab/world-envVLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators链接https://arxiv.org/pdf/2510.00406 代码https://github.com/VLA-RFT/VLA-RFT四、 推理时强化学习 (Test-Time RL)在部署阶段利用预训练的价值函数进行实时优化或纠错。To Err is Robotic: Rapid Value-Based Trial-and-Error during Deployment (Bellman-Guided Retrials)链接https://arxiv.org/abs/2406.15917 代码https://github.com/notmahi/bellman-guided-retrialsSteering Your Generalists: Improving Robotic Foundation Models via Value Guidance (V-GPS)链接https://arxiv.org/abs/2410.13816 代码https://v-gps.github.io/Hume: Introducing System-2 Thinking in Visual-Language-Action Model链接https://arxiv.org/abs/2505.21432 代码https://github.com/Hume-VLA/HumeVLA-Reasoner: Empowering Vision-Language-Action Models with Reasoning via Online Monte Carlo Tree Search链接https://arxiv.org/abs/2509.22643五、 强化学习对齐 (RL Alignment)旨在使 VLA 策略符合人类偏好或安全约束。GRAPE: Generalizing Robot Policy via Preference Alignment链接https://arxiv.org/abs/2411.19309 代码https://github.com/GRAPE-VLA/GRAPESafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning链接https://arxiv.org/abs/2503.03480 代码https://safevla.github.io/六、 其他分类 (Unclassified)RPD: Refined Policy Distillation: From VLA Generalists to RL Experts链接https://arxiv.org/abs/2503.05833总结VLA 与 RL 的结合正处于快速爆发期。将模仿学习的大规模先验与强化学习的自进化能力相结合是通向具身通用人工智能的关键路径。都看到这了点个关注再走吧
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

维护一个网站的费用网站正在建设中 公告

Langchain-Chatchat能否支持文档权限继承? 在企业知识管理系统逐渐从“能查”迈向“安全可控”的今天,一个看似简单却至关重要的问题浮出水面:Langchain-Chatchat 能否支持文档权限继承? 这个问题背后,其实是对本地化大…

张小明 2026/1/8 23:32:51 网站建设

沈阳企业网站seo公司ai网站

2025最新!专科生必看!9个AI论文软件测评:开题报告/文献综述全攻略 2025年专科生论文写作工具测评:从功能到体验的深度解析 随着AI技术在学术领域的广泛应用,越来越多的专科生开始借助智能工具提升论文写作效率。然而&a…

张小明 2026/1/11 12:16:10 网站建设

网站开发包括软件吗app投放推广

HakuNeko终极使用指南:零基础快速上手漫画批量下载 【免费下载链接】hakuneko Manga & Anime Downloader for Linux, Windows & MacOS 项目地址: https://gitcode.com/gh_mirrors/ha/hakuneko 还在为漫画网站加载缓慢而烦恼?想要离线阅读…

张小明 2026/1/9 5:46:21 网站建设

广州本地门户网站新网站建设代理商

第一章:揭秘Open-AutoGLM核心架构与技术原理Open-AutoGLM 是一个面向自动化自然语言任务的开源大模型框架,融合了生成式语言建模与智能任务调度机制。其核心设计理念在于实现“理解-规划-执行”的闭环推理流程,支持动态任务分解与多工具协同调…

张小明 2026/1/10 3:13:44 网站建设

价格对比网站开发聚美优品的pc网站建设

火储调频,储能调频,电动汽车调频,电动汽车系数采用SOC和频率自适应控制。 matlab/simulink 电动汽车调频,储能调频,火储调频,自适应下垂,SOC控制。 电动汽车相当于储能,可以进行充放…

张小明 2026/1/9 7:41:13 网站建设

如何做公众号影视网站合肥网站建设的公司

图像修复中的“智能”与“工程”:从 DDColor 到数据调度的完整闭环 在一张泛黄的老照片上,一位身着旗袍的女子站在石库门前。几十年后,我们希望看到的不仅是模糊轮廓,而是她衣襟上的刺绣纹路、脸上自然的肤色,甚至门框…

张小明 2026/1/12 14:36:20 网站建设