网站内容建设的建议黑马程序员视频库

张小明 2026/1/15 19:40:44
网站内容建设的建议,黑马程序员视频库,成都旅游团,网站开发硬件工程师待遇主页#xff1a;http://qingkeai.online/ 原文#xff1a;https://mp.weixin.qq.com/s/lfkwxQ-7N2jdVaOFAN5GmQ 随着基于大规模模仿学习的视觉-语言-动作 (VLA) 模型取得显著进展#xff0c;将 VLA与强化学习 (RL)相结合已成为一种极具前景的新范式。该范式利用与环境的试错…主页http://qingkeai.online/原文https://mp.weixin.qq.com/s/lfkwxQ-7N2jdVaOFAN5GmQ随着基于大规模模仿学习的视觉-语言-动作 (VLA) 模型取得显著进展将VLA与强化学习 (RL)相结合已成为一种极具前景的新范式。该范式利用与环境的试错交互或预先采集的次优数据进一步提升机器人的决策与执行能力。本文对该领域的关键论文进行了分类整理涵盖离线RL、在线RL、世界模型、推理时RL及对齐技术。一、 离线强化学习 (Offline RL)离线 RL 预训练的 VLA 模型利用人类演示和自主收集的数据进行学习无需实时环境交互。Q-Transformer: Scalable Offline Reinforcement Learning via Autoregressive Q-Functions链接https://arxiv.org/abs/2309.10150 代码https://github.com/google-deepmind/q_transformerOffline Actor-Critic Reinforcement Learning Scales to Large Models (Perceiver-Actor-Critic)链接https://arxiv.org/abs/2402.05546 代码https://offline-actor-critic.github.io/GeRM: A Generalist Robotic Model with Mixture-of-experts for Quadruped Robot链接https://arxiv.org/abs/2403.13358 代码https://github.com/Improbable-AI/germReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning链接https://arxiv.org/abs/2505.07395MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models链接https://arxiv.org/abs/2503.08007CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning链接https://arxiv.org/pdf/2508.02219Balancing Signal and Variance: Adaptive Offline RL Post-Training for VLA Flow Models (ARFM)链接https://arxiv.org/pdf/2509.04063二、 在线强化学习 (Online RL)通过在环境中的试错交互进一步优化 VLA 模型的性能。1. 仿真环境内 (In Simulator)FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning链接https://arxiv.org/abs/2409.16578 代码https://github.com/flare-vla/flarePolicy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone (PA-RL)链接https://arxiv.org/abs/2412.06685 代码https://pa-rl.github.io/Improving Vision-Language-Action Model with Online Reinforcement Learning (iRe-VLA)链接https://arxiv.org/abs/2501.16664Interactive Post-Training for Vision-Language-Action Models (RIPT-VLA)链接https://arxiv.org/abs/2505.17016 代码https://github.com/OpenHelix-Team/RIPTVLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning链接https://arxiv.org/abs/2505.18719 代码https://github.com/vla-rl/vla-rlWhat Can RL Bring to VLA Generalization? An Empirical Study (RLVLA)链接https://arxiv.org/abs/2505.19789 代码https://github.com/S-S-X/RLVLARFTF: Reinforcement Fine-tuning for Embodied Agents with Temporal Feedback链接https://arxiv.org/abs/2505.19767SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning周六上午10点一起聊聊VLA强化学习训练框架SimpleVLA-RL链接https://arxiv.org/pdf/2509.09674 代码https://github.com/SimpleVLA/SimpleVLATGRPO: Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization链接https://arxiv.org/abs/2506.08440 代码https://github.com/TGRPO/TGRPOOctoNav: Towards Generalist Embodied Navigation链接https://arxiv.org/abs/2506.09839 代码https://octonav.github.io/RLRC: Reinforcement Learning-based Recovery for Compressed Vision-Language-Action Models链接https://arxiv.org/pdf/2506.17639 代码https://rlrc-vla.github.io/RLinf: Reinforcement Learning Infrastructure for Agentic AI下周二晚8点和无问芯穹首席研究员林灏一起聊聊具身智能 RL 训练框架 RLinf 的系统设计链接https://arxiv.org/pdf/2509.15965 代码https://rlinf.github.io/RLinf-VLA: A Unified and Efficient Framework for VLARL TrainingVLARL 算法如何设计从零上手 OpenVLA 的强化学习微调实践链接https://arxiv.org/pdf/2510.06710v12. 真实世界 (In Real-World)RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning链接https://arxiv.org/abs/2412.09858 代码https://rldg.github.io/Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone链接https://arxiv.org/abs/2412.06685 代码https://github.com/MaxSobolMark/PolicyAgnosticRLImproving Vision-Language-Action Model with Online Reinforcement Learning链接https://arxiv.org/abs/2501.16664ConRFT: A Reinforced Fine-tuning Method for VLA Models via Consistency Policy链接https://arxiv.org/abs/2502.05450 代码https://github.com/ConRFT/ConRFTVLAC: A Vision-Language-Action-Critic Model for Robotic Real-World Reinforcement Learning链接https://arxiv.org/abs/2509.15937 代码https://github.com/VLAC-VLA/VLACSelf-Improving Embodied Foundation Models (Generalist)链接https://arxiv.org/pdf/2509.15155三、 世界模型 (World Model / Model-Based RL)利用世界模型作为虚拟环境实现低成本、安全的 VLA 策略后训练。World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training链接https://arxiv.org/abs/2509.24948 代码https://github.com/amap-cvlab/world-envVLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators链接https://arxiv.org/pdf/2510.00406 代码https://github.com/VLA-RFT/VLA-RFT四、 推理时强化学习 (Test-Time RL)在部署阶段利用预训练的价值函数进行实时优化或纠错。To Err is Robotic: Rapid Value-Based Trial-and-Error during Deployment (Bellman-Guided Retrials)链接https://arxiv.org/abs/2406.15917 代码https://github.com/notmahi/bellman-guided-retrialsSteering Your Generalists: Improving Robotic Foundation Models via Value Guidance (V-GPS)链接https://arxiv.org/abs/2410.13816 代码https://v-gps.github.io/Hume: Introducing System-2 Thinking in Visual-Language-Action Model链接https://arxiv.org/abs/2505.21432 代码https://github.com/Hume-VLA/HumeVLA-Reasoner: Empowering Vision-Language-Action Models with Reasoning via Online Monte Carlo Tree Search链接https://arxiv.org/abs/2509.22643五、 强化学习对齐 (RL Alignment)旨在使 VLA 策略符合人类偏好或安全约束。GRAPE: Generalizing Robot Policy via Preference Alignment链接https://arxiv.org/abs/2411.19309 代码https://github.com/GRAPE-VLA/GRAPESafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning链接https://arxiv.org/abs/2503.03480 代码https://safevla.github.io/六、 其他分类 (Unclassified)RPD: Refined Policy Distillation: From VLA Generalists to RL Experts链接https://arxiv.org/abs/2503.05833总结VLA 与 RL 的结合正处于快速爆发期。将模仿学习的大规模先验与强化学习的自进化能力相结合是通向具身通用人工智能的关键路径。都看到这了点个关注再走吧
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

现在允许做网站吗常用网站建设技术是什么

IndexTTS2完整教程:5分钟掌握工业级语音合成技术 【免费下载链接】index-tts An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System 项目地址: https://gitcode.com/gh_mirrors/in/index-tts IndexTTS2是一款革命性的零样本文本…

张小明 2026/1/10 12:38:54 网站建设

asp网站的安全性有哪些网站可以做全屏代码

目录 基本要求 节点结构 核心算法:中序遍历 指针修改 算法思想 递归实现 非递归实现 复杂度分析 时间复杂度: 空间复杂度: 基本要求 这是一个经典的算法问题:将二叉搜索树(BST)转换成一个排序的双…

张小明 2026/1/8 23:14:05 网站建设

做ppt的网站叫什么软件python 做网站 套件

Truffle智能合约开发全流程实践 在当今区块链应用快速发展的背景下,构建一个完整的去中心化应用(DApp)已不再是仅限于极客的实验项目。越来越多的开发者希望掌握从智能合约编写到前端交互的全栈能力。而以太坊生态中,Truffle 作为…

张小明 2026/1/13 15:04:30 网站建设

网站开发外包费用会计科目成都开发网站

导语 【免费下载链接】Hunyuan-4B-Instruct 腾讯开源混元4B指令微调大模型,专为高效部署设计。支持256K超长上下文与混合推理模式,兼具快速响应与深度思考能力。在数学、编程、科学推理及智能体任务中表现卓越,适配从边缘设备到高并发服务器的…

张小明 2026/1/9 5:47:50 网站建设

优秀的网站首页网页快照网站

上一章我们搞懂了乘法运算的核心:通过“移位累加”把复杂乘法拆解为多次加法,最终靠全加器完成运算。顺着运算体系的脉络,我们自然会触及最后一个基础运算——除法。提到除法,很多人会先想到“乘法的逆运算”,但从计算…

张小明 2026/1/9 5:47:47 网站建设

东莞seo建站费用网站项目遇到的问题

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 快速开发一个Ubuntu输入法原型,实现基本拼音输入功能。使用Python和简易GUI,重点展示AI预测功能。要求代码精简,可在1小时内完成开发和测试。点击…

张小明 2026/1/10 18:18:32 网站建设