大学学校类网站设计wordpress回复插件

张小明 2025/12/31 5:17:05
大学学校类网站设计,wordpress回复插件,html5网页模板代码,网站建设类织梦模板看起来挺简洁#xff0c;对吧#xff1f;但当你翻开教材#xff0c;发现这背后藏着一堆正交矩阵、奇异值、特征向量……瞬间头大。我每次看到 SVD#xff0c;都忍不住想#xff1a;这玩意儿到底是怎么被“想出来”的#xff1f;是某个数学家喝多了咖啡#xff0c;突然梦…看起来挺简洁对吧但当你翻开教材发现这背后藏着一堆正交矩阵、奇异值、特征向量……瞬间头大。我每次看到 SVD都忍不住想这玩意儿到底是怎么被“想出来”的是某个数学家喝多了咖啡突然梦见上帝说“听着所有矩阵都能拆成三步走……”今天我们不背公式不套定理。我们要还原 SVD 的“发明”过程——从一个最朴素的问题出发一个矩阵到底对向量做了什么一、矩阵左乘 沿坐标轴的伸缩从最简单例子开始我们从一个最简单的2×2对角矩阵入手D[3001]取任意向量x[x1x2]左乘后得到Dx[3x1x2]这意味着输入向量在标准基方向e1(1,0)T和e2(0,1)T上被独立拉伸——x方向放大 3 倍y方向不变。这个例子揭示了矩阵左乘的本质线性变换 对输入空间的各个方向进行伸缩可能还混合。而对角矩阵之所以“干净”是因为它恰好以标准基为伸缩方向没有混合。但现实中的矩阵通常不是对角的。那么问题来了非对角矩阵是否也能找到自己的“伸缩方向”二、EVD方阵的“主伸缩方向”与秩的含义考虑一个对称方阵A[2112]我们寻找那些被A作用后只伸缩、不转向的向量v即满足Avλv这就是特征方程其中λ是特征值v是对应的特征向量。对上面的A解得两组解λ13对应v1[11]λ21对应v2[1−1]将这两个向量单位化归一化得到标准正交基q11√2[11],q21√2[1−1]把它们拼成正交矩阵Q[q1,q2]则QTQI。由于Aqiλiqi对每个列都成立我们可以把所有等式合写为AQQΛ⇒AQΛQT其中Λ[3001]这就是特征值分解EVD。它告诉我们任何可对角化的方阵本质上只是在一组特定正交方向上做独立伸缩。满秩 vs 低秩不只是数学更是能力一个n×n矩阵的“能力”取决于它有多少个非零特征值。满秩矩阵比如A[2112]有两个非零特征值3 和 1秩为 2。它能对任意方向的输入产生非零输出——换句话说它可以“操控”整个 2D 空间。低秩矩阵比如B[1111]特征值为 2 和 0秩为 1。它只能在方向[11]上拉伸而在垂直方向[1−1]上输出恒为零。无论你输入什么结果永远落在一条直线上。在深度学习中这种差异至关重要满秩变换如初始权重具有最大表达能力能响应任意输入变化低秩更新如微调时的ΔW则表明模型真正需要调整的往往只是少数几个“敏感方向”。这正是 LoRALow-Rank Adaptation有效的核心原因我们不需要改动整个高维权重矩阵只需在低维子空间中微调就能高效适配新任务。但 EVD 有一个致命限制它只适用于方阵。一旦矩阵是“长方形”的比如M∈Rn×m且n≠m特征方程Mvλv就因维度不匹配而失去意义。于是我们必须回答一个更一般的问题非方阵如何描述其“伸缩行为”三、SVD为非方阵找到“跨空间的主方向”面对M∈Rn×m我们放弃“输入输出方向相同”的执念转而问是否存在输入空间的一组标准正交基{v1,…,vm}和输出空间的一组标准正交基{u1,…,un}使得Mviσiui(i1,…,rmin(n,m))这个等式是我们希望达成的目标第i个输入主方向vi只激发第i个输出主方向ui放大σi倍。我们按拉伸强度从大到小排序σ1≥σ2≥⋯≥σr≥0。更一般的表示是MVUΣ后面我们可以知道V是正交矩阵所以上式两边都右乘VT就可以得到常见的 SVD 的形式了MVVTMVV−1MUΣVT3.1 以最强方向σ1为例回归正题我们该如何计算σi呢我们以最强方向即σ1为最大值的情况为例。假设存在单位向量v1和u1使得Mv1σ1u1,∥v1∥∥u1∥1.两边取范数得∥Mv1∥∥σ1u1∥σ1.因此σ1就是M在单位输入下能产生的最大输出长度。换句话说σ1是如下优化问题的解σ1max∥v∥1∥Mv∥.由于范数非负等价于最大化其平方σ21max∥v∥1∥Mv∥2max∥v∥1vT(MTM)v.3.2 计算奇异值和右奇异矩阵 V记AMTM。矩阵A是m×m实对称矩阵且对任意v有vTAv≥0故A半正定。记A的特征值按非增序排列为λ1≥λ2≥⋯≥λm≥0对应的标准正交特征向量为q1,…,qm即Aqiλiqi瑞利商的极值性质表明(原理推导见本节末尾max∥v∥1vTAvλ1,且最大值在vq1处取得。更一般地对k1,…,mmax∥v∥1v⊥q1,…,qk−1vTAvλk,在vqk处取得。说人话就是第k 大的值就是λk而且是在vqk时可以得到。所以σ2imax∥v∥1vT(MTM)vλii1,…,m,则σi√λi,σ1≥σ2≥⋯≥σm≥0且viqi至此我们成功求解了矩阵 V和奇异值矩阵Σ瑞利商性质对实对称矩阵A定义其瑞利商为RA(c)cTAccTc,c≠0.当∥c∥1时RA(c)cTAc。设A的特征值按非增序排列为λ1≥λ2≥⋯≥λm≥0对应的标准正交特征向量为q1,…,qm即Aqiλiqi,qTiqjδij.瑞利商的极值性质表明max∥c∥1cTAcλ1,且最大值在cq1处取得。更一般地对k1,…,mmax∥c∥1c⊥q1,…,qk−1cTAcλk,在cqk处取得。因此令σi√λi,ciqi,i1,…,m,则σ1≥σ2≥⋯≥σm≥0且∥Mci∥2cTiAciλiσ2i.3.3 构造左奇异矩阵令rrank(M)。由于rank(M)rank(MTM)有σi0当且仅当i≤r。对每个i1,…,r根据最前面的定义Mviσiui我们有ui1σiMvi.至此就可算出对应的σi,vi,ui。我们会发现求得的ui也是基坐标彼此正交∥ui∥1σi∥Mvi∥1σi⋅σi1,且Mviσiui.对i≠j≤r有uTiuj1σiσjvTiMTMvj1σiσjvTi(σ2jvj)σj⋅vTivj0,故{u1,…,ur}是Rn中的标准正交向量组。前面计算的ui是与vi一一对应的但是当rn时剩下的ui该如何计算呢我们会发现存在n−r维子空间U⊥{x∈Rn∣∣uTix0,∀i1,…,r}.在U⊥中任取一组标准正交基{ur1,…,un}则最终的左奇异矩阵为U[u1,…,un]∈Rn×n为正交矩阵。3.4 拼装 SVD令V[v1,…,vm]∈Rm×mΣ∈Rn×m为对角矩阵其对角元为σ1,…,σr其余元素为 0。由Mviσiui对i1,…,r成立且对ir有σi0可得矩阵等式MVUΣ.由于V正交VTVIm右乘VT得MUΣVT.结语SVD 并非凭空定义的数学魔术而是为了解决“非方阵如何描述伸缩”这一朴素问题从对角矩阵 → EVD → 跨空间推广一步步自然推导出的必然结果。
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

简述网站建设的一般流程继续访问浏览器

2025年的视频剪辑领域,AIGC技术正掀起“效率革命”,智能辅助功能已成为软件升级的核心方向——从素材自动标记到画质智能优化,从多平台自动适配到特效一键生成,工具的迭代让创作门槛持续降低,却也让“选对软件”变得更…

张小明 2025/12/30 20:53:44 网站建设

阜阳网站开发招聘网站的icp备案信息是什么

如何快速解锁VMware macOS支持:普通PC运行苹果系统的终极指南 【免费下载链接】unlocker VMware macOS utilities 项目地址: https://gitcode.com/gh_mirrors/unl/unlocker 想在普通PC上体验macOS系统吗?VMware macOS Unlocker V4让这个梦想成真&…

张小明 2025/12/31 5:04:05 网站建设

asp网站上一篇下一篇代码淘宝商城的网站建设

Wan2.2-T2V-A14B如何优化远景画面的细节丢失问题? 你有没有遇到过这种情况:满怀期待地输入一段诗意满满的提示词——“晨雾缭绕的山谷,远处山巅上一座古寺若隐若现”——结果生成的视频里,那座本该神秘庄严的寺庙呢?没…

张小明 2025/12/31 4:30:18 网站建设

长宁制作网站网站管理员怎样管理员权限设置

大家好我是风歌,曾担任某大厂java架构师,如今专注java毕设领域。今天要和大家聊的是一款java小程序项目——电影交流平台小程序。项目源码以及远程配置部署相关请联系风歌,文末附上联系信息 。项目简介:本系统主要包括首页、个人中…

张小明 2025/12/29 10:24:09 网站建设

城阳网站设计番禺怎样优化网站建设

AWK基础与正则表达式入门 1. AWK基础 AWK是一个强大的数据处理工具,可用于过滤和显示文件内容。以下是一些基本操作: - 显示文件内容 :使用 awk 命令可以打印文件的所有行。例如,打印 /etc/passwd 文件的所有行: $ awk { print } /etc/passwd这等同于使用 $…

张小明 2025/12/31 5:03:57 网站建设

电商软文广告经典案例兰州优化公司哪个好

重庆工商大学派斯学院毕业论文任务书内容模板课题的内容1. 背景研究与需求分析调查和分析当前基于web的乐养系统与健康监护服务的现状与需求。分析用户对于养老服务预约、健康管理记录、费用查询与缴费等方面的具体需求,并给出相应的解决方案。2. 系统设计定义系统的…

张小明 2025/12/30 23:17:29 网站建设