网站备案号添加简历模板电子版免费

张小明 2026/1/2 18:38:42
网站备案号添加,简历模板电子版免费,阿亮seo技术顾问,沧州seo包年优化软件排名小白也能懂#xff1a;大模型训练与微调技术全解析#xff08;程序员必看收藏#xff09; 文章详细解释了大模型的训练过程#xff0c;包括预训练(获取基座模型)、后训练(监督微调SFT和强化学习RL)等核心概念。通过DeepSeek和Qwen两个实际案例#xff0c;展示了如何在不同…小白也能懂大模型训练与微调技术全解析程序员必看收藏文章详细解释了大模型的训练过程包括预训练(获取基座模型)、后训练(监督微调SFT和强化学习RL)等核心概念。通过DeepSeek和Qwen两个实际案例展示了如何在不同场景下应用这些训练方法来优化模型性能。文章旨在帮助初学者理解大模型训练的基础逻辑为后续实践打下基础。我们或多或少都听说LLM大模型是先“训练”出来然后再用于“推理”那怎么理解这个“训练”过程是不是经常听说行业性场景中要使用垂域大模型比通用大模型效果会更好然后都说垂域大模型是“微调”出来的那么什么是“微调”和上面说的“训练”是什么关系当你尝试去深入了解这些问题时搜到的各种介绍是不是都有点深奥看到预训练、后训练、监督微调、强化学习、低秩适应、奖励模型等一堆概念是不是有点懵逼本文对这些概念和模式进行梳理汇总并结合DeepSeek和Qwen两个案例进行说明方便像我一样从信息化领域转型过来刚入门的同学也能快速了解“训练”的范围和基础逻辑。预训练Pre-Training和后训练Post-Training“训练Training”其实是多年前机器学习时代就有的概念把机器学习模型可以想象成一个包含有多元变量的数学函数公式yw1x1w2x2…wnxnb其中X1、X2…Xn就是预先选择好要参与计算的特征变量然后利用一组包含特征值x和结果值y的历史数据进行训练得到就是各个特征变量的权重系数W1、W2…Wn这样这个函数就建立起来训练出来了然后预测过程就是将新的一组变量x代入这个函数公式模型进行计算得到函数结果y就是预测值。虽然大模型本质和机器学习差异还是巨大的比如大模型的训练过程是不需要人工预先选择/设计特征x的而是自动学习提取出来的大模型的权重系数W的数量是巨大的几十亿到上万亿参数量大模型的推理是基于词向量的概率推理和机器学习这种确定性映射计算不同等。但为了便于理解我们还是可以将大模型的训练过程简单理解成以上数学函数的训练过程最终都是为了训练得到这个函数的一套权重参数只不过大模型的这个函数公式特别通用化、变量特征不固定、权重参数量特别多。这个过程就包括预训练pre-training和后训练post-train其相互关系如下预训练pre-training得到的叫基座模型可以认为是得到数学函数的一套基础权重参数可以满足一般场景的预测和推理需要。后训练post-train则是在这个基座模型基础上结合业务场景需要和行业知识数据等进一步训练最终是调整了基座模型的某些权重参数以更精准的满足具体业务场景预测和推理需要。监督微调SFT和强化学习RL后训练post-train内部又包含监督微调Supervised Fine-TuningSFT和强化学习Reinforcement LearningRL两个方向其主要实现机制对比如下先利用前文所述数学函数的例子来看看监督微调与强化学习的区别监督微调是要准备一组特征值X和结果值Y也就是所谓的标注/标签组成的数据集来进行训练通过调整函数的权重参数让它的预测值与结果值Y尽可能接近它的核心目标就是要最小化预测值与真实标签的误差而强化学习则不需要预先准备好结果值Y它只要提供输入让函数模拟计算再通过与环境的交互获得反馈奖励或惩罚通过调整参数尽可能获取奖励它的核心目标是要能最大化长期累积奖励期望值。更形象的比喻监督微调有点像刷练习题预先准备好题目和标准答案通过同类题目的反复练习和纠错调参确保碰到新题也能作对而强化学习有点像模拟考需要阅卷老师评价通过反复模拟考提升书写规范性、掌握时间分配、符合阅卷老师倾向等以尽可能得高分。如上所述监督微调Supervised Fine-TuningSFT核心是要用到精确标注的数据集而且是输入特征/输出标签成对出现的数据集比如教育领域的题目和解题方法医疗领域的症状和诊断方法法律领域的案情和判决结果等经过微调部分参数或全部参数得到一个适用于特定行业领域更精准的专有模型。这篇文章基础逻辑讲得非常清晰按微调的代价从高到低包括全量微调Full-Tuning给基座模型“重塑金身”相当于对以上所说数学函数的权重参数w全部都调整冻结部分参数Freeze-Tunging只调“头部”参数低秩适应LoRA给基座模型加外挂配件相当于不用改模型本身参数而是通过做加法在基座模型上额外增加一些小的数学函数以确保最终预测和推理结果也能符合行业特性还有更轻量的量化低秩适应QLoRA是把基座模型先量化压缩后再做加法。强化学习Reinforcement LearningRL的核心逻辑和微调SFT差别很大它核心是通过奖励函数/奖励模型Reward Model的方式来引导大模型形成一定的“肌肉记忆”就是通过对模型输出选择某些质量维度如回答的有用性、安全性进行评价生成‌奖励分数‌来指导大模型自我优化方向举个例子可能更好理解比如我们常用的一些聊天对话大模型之所以能够提供所谓的“情绪价值”之所以不会出现暴力和涩涩的回答很大程度上是通过强化学习实现的在强化学习期间如果大模型的输出是温暖和正面的奖励模型就给它加分经过长时间的强化学习引导大模型的回答自然就会符合这些价值观和偏好。所以强化学习的核心就在于奖励模型这个才是灵魂和难度所在当然强化学习内部又还有多种策略比如RLHF人类反馈强化学习、PPO近端策略优化、GRPO群体相对策略优化等后面案例中也会有所展开。DeepSeek的模型谱系示例接下来我们用DeepSeek的模型谱系案例来理解上述预训练、监督微调和强化学习等不同训练方法的具体实践如图我们都很熟悉DeepSeek有两种比较常用的模型通用语言模型V3和推理增强模型R1这两种模型实际都是在基座模型DeepSeek-V3-Base基础上经过监督微调和强化学习出来的。和我们一般认知有所不同都说R1是基于V3的实际指的是基于V3-Base这个基座模型Foundation Model。然后用于聊天对话的V3实际也是在V3-Base基础上经过专门的后训练得出来的基于标注好的问答数据集做SFT基于强化学习评价引导等所以才能在聊天对话中提供“情绪价值”。而R1则是推理增强模型其核心也包括监督微调SFT过程利用带思维链推理过程标注的数据集也包括强化学习RL过程利用奖励模型来评分如有推理过程和格式就加分推理过程越清晰得分越多等。额外提一句R1推理模型因为有Thinking思考过程响应时间更慢一些但可解释性更强一些所以更适合复杂分析和总结的场景而需要即时响应并反馈的场景则更适合用通用语言模型V3。五一前夕出来的Qwen3模型则是一个混合推理模型可以按需开启/关闭推理思考过程。Qwen2.5-Math模型谱系示例前段时间因为要引用Qwen的数学模型Qwen2.5-Math-7B-Instruct在魔搭社区找到该模型的介绍看到其模型谱系如下如图在Qwen2.5模型基础上利用数据集“Math Corpus V2”经过预训练Pre-train得到Qwen2.5数学模型系列的基座模型“Qwen2.5-Math”。在基座模型“Qwen2.5-Math”基础上经过监督微调SFT得到Qwen2.5-Math-SFT模型这里提到SFT过程包括这段英文主要说明微调SFT过程用到了思维链CoT做法以及集成工具推理TIR的做法关键是利用“Math SFT V2”这套标注数据集实现中英文数学问题的解答。在Qwen2.5-Math-SFT模型基础上进一步进行强化学习其核心是利用“Qwen2.5-Math-RM72B”这个评价模型Reward Model同时基于‌群体相对策略优化GRPOGroup Relative Policy Optimization才最终得到我们要在业务场景中使用的模型“Qwen2.5-Math-7B-Instruct”。​最后我在一线科技企业深耕十二载见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事早已在效率与薪资上形成代际优势我意识到有很多经验和知识值得分享给大家也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我整理出这套 AI 大模型突围资料包✅AI大模型学习路线图✅Agent行业报告✅100集大模型视频教程✅大模型书籍PDF✅DeepSeek教程✅AI产品经理入门资料完整的大模型学习和面试资料已经上传带到CSDN的官方了有需要的朋友可以扫描下方二维码免费领取【保证100%免费】​​为什么说现在普通人就业/升职加薪的首选是AI大模型人工智能技术的爆发式增长正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议到全国两会关于AI产业发展的政策聚焦再到招聘会上排起的长队AI的热度已从技术领域渗透到就业市场的每一个角落。智联招聘的最新数据给出了最直观的印证2025年2月AI领域求职人数同比增幅突破200%远超其他行业平均水平整个人工智能行业的求职增速达到33.4%位居各行业榜首其中人工智能工程师岗位的求职热度更是飙升69.6%。AI产业的快速扩张也让人才供需矛盾愈发突出。麦肯锡报告明确预测到2030年中国AI专业人才需求将达600万人人才缺口可能高达400万人这一缺口不仅存在于核心技术领域更蔓延至产业应用的各个环节。​​资料包有什么①从入门到精通的全套视频教程⑤⑥包含提示词工程、RAG、Agent等技术点② AI大模型学习路线图还有视频解说全过程AI大模型学习路线③学习电子书籍和技术文档市面上的大模型书籍确实太多了这些是我精选出来的④各大厂大模型面试题目详解⑤ 这些资料真的有用吗?这份资料由我和鲁为民博士共同整理鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。所有的视频教程由智泊AI老师录制且资料与智泊AI共享相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。资料内容涵盖了从入门到进阶的各类视频教程和实战项目无论你是小白还是有些技术基础的这份资料都绝对能帮助你提升薪资待遇转行大模型岗位。智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌构建起前沿课程智能实训精准就业的高效培养体系。课堂上不光教理论还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作把课本知识变成真本事‌​​​​如果说你是以下人群中的其中一类都可以来智泊AI学习人工智能找到高薪工作一次小小的“投资”换来的是终身受益应届毕业生‌无工作经验但想要系统学习AI大模型技术期待通过实战项目掌握核心技术。零基础转型‌非技术背景但关注AI应用场景计划通过低代码工具实现“AI行业”跨界‌。业务赋能 ‌突破瓶颈传统开发者Java/前端等学习Transformer架构与LangChain框架向AI全栈工程师转型‌。获取方式有需要的小伙伴可以保存图片到wx扫描二v码免费领取【保证100%免费】**​
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

seo怎么做整站排名西安二手房出售信息

Speechless微博备份工具:3步构建你的个人社交档案馆终极指南 【免费下载链接】Speechless 把新浪微博的内容,导出成 PDF 文件进行备份的 Chrome Extension。 项目地址: https://gitcode.com/gh_mirrors/sp/Speechless 在信息快速更迭的社交媒体时…

张小明 2026/1/1 23:10:57 网站建设

知名电子商务网站有哪些玉环做网站有哪些

3天掌握MihoyoBBSTools账号异常修复:从零基础到精通配置 【免费下载链接】MihoyoBBSTools Womsxd/AutoMihoyoBBS,米游社相关脚本 项目地址: https://gitcode.com/gh_mirrors/mi/MihoyoBBSTools 想要快速解决米游社自动化签到中遇到的stoken配置问…

张小明 2026/1/2 1:30:59 网站建设

在线做网站教程网站建设尺寸

不仅仅是语法糖,更是前端工程思想的体现 📖 前言:数据绑定演进史与Vue的设计哲学 在前端开发的演变长河中,数据绑定技术经历了从手动操作DOM到声明式渲染的跨越式发展。早期jQuery时代的“命令式编程”要求开发者精确控制每一个D…

张小明 2026/1/2 5:55:42 网站建设

服务专业的品牌建站公司有哪些做网站的品牌

深夜的校园里,图书馆的灯光还亮着,键盘敲击声此起彼伏。又到了一年一度的毕业季,无数学生正为毕业论文熬夜奋战。 写作、查重、格式调整、文献整理...每个环节都让人头疼不已。AI写作工具逐渐成为学术研究的得力助手,但市场上琳琅…

张小明 2026/1/2 3:59:40 网站建设

做网站python和php哪个好学二建注册进度查询系统

文章目录公有云的特点和价值公有云的架构公有云与私有云的比较公有云是指第三方提供商通过公共Internet为用户提供的云服务,用户可以通过Internet访问云并享受各类服务,包括并不限于计算、存储、网络等。公有云服务的模式可以是免费或按量付费。 公有云的…

张小明 2025/12/29 9:14:50 网站建设