wordpress资讯站模板wordpress主动推送

张小明 2026/1/2 22:33:14
wordpress资讯站模板,wordpress主动推送,建设网站明细报价表,学网站建设培训机构本文从工程师视角系统介绍大语言模型(LLM)的基本概念、应用场景、工作原理及实践方法。文章详细解析了LLM在医疗、软件开发、教育等多领域的应用价值#xff0c;对比了工程思维与算法思维差异#xff0c;并提供了从数学理论到工程实践的完整学习路径。同时分享了丰富的学习资…本文从工程师视角系统介绍大语言模型(LLM)的基本概念、应用场景、工作原理及实践方法。文章详细解析了LLM在医疗、软件开发、教育等多领域的应用价值对比了工程思维与算法思维差异并提供了从数学理论到工程实践的完整学习路径。同时分享了丰富的学习资源和面试资料帮助读者从零开始掌握大模型技术解决实际业务问题。1.背景随着22年底chatgpt的重磅推出大语言模型LLM发展迅猛从最初的“大号文本预测器”会听会说一步步成长为如今能处理复杂任务的“智能体”基石会想、会做。25年初deepseek点燃了国人对大模型的热情不知您是否好奇Transformer、自注意力self-attention、LLM、Token、向量化Embedding、涌现、Pre-training、有监督微调SFT、RLHF、MOE、MLA、多模态、思维链CoT、FunctionCalling、RAG、MCP协议、AIAgent、A2A协议等概念层出不穷到底在解决什么问题作为起始篇将与您一起从宏观上理解下大模型的基本脉络并基于当下理解和认知从工程师视角制定学习计划 该系列将从工程师视角一步步去学习并理解大模型相关概念再到会用深入理解掌握原理动手实践解决实际问题。1概念这些层出不穷的概念背后到底在解决什么问题2会用除了知识问答与会话还能用大模型解决什么问题有什么局限性3理解大语言模型vs工程开发在思维方式上有什么区别4原理大语言模型到底是如何工作的5动手实践如何从0开始构建大语言模型6实际问题如何用大语言模型创造性解决业务场景实际问题7学习计划工程师如何一步步掌握大模型背后的理论知识、算法模型2.概念什么是LLM大语言模型大语言模型Large Language Model, LLM是一种使用大量文本数据训练的深度学习模型其核心能力是可以理解和生成人类语言。大模型 海量数据 深度学习算法 超强算力。人工智能AI、机器学习、深度学习、大语言模型LLM、生成式人工智能GenAI关系大致如下近几年大语言模型演变历程大致如下3.会用大语言模型能做什么3.1应用场景大模型Large Language Models, LLMs的应用非常广泛并且正以前所未有的速度渗透到各个行业。它们不仅能处理自然语言任务还能理解和生成代码、进行多模态交互甚至作为智能体Agent自主决策和执行任务。应用领域具体场景核心价值/案例医疗与健康智能问诊与分诊、医学影像分析、药物研发与挖掘、健康管理、医院运营优化加速药物研发进程提升诊疗效率优化患者服务体验软件开发代码生成与补全、Bug调试与修复、代码解释、不同编程语言转换、自动化测试提升开发效率降低代码缺陷加速学习进程教育与科研个性化辅导、作业批改、语言学习、科学计算、论文摘要与翻译因材施教提升学习效率辅助科学研究工业与制造智能决策支持、生产流程优化、质量控制、 Predictive Maintenance预测性维护、供应链管理、研发设计提升生产效率降低故障率缩短研发周期优化能耗能源与电力虚拟电厂调度、电网负荷预测、能源交易、无功补偿优化、电能质量管理提升电网稳定性促进新能源消纳实现精准的需求响应和调度内容创作与 媒体新闻撰稿、剧本创作、营销文案、翻译、摘要生成提升内容生产效率和创意多样性客户服务与营销智能客服、个性化推荐、市场洞察分析、销售话术生成提升客户满意度降低人力成本实现精准营销法律司法法律条文检索与解读、案例分析与裁判文书生成、合同审查与智能起草、案件焦点识别与证据分析提升案件处理效率和准确性降低人工工作负荷航天高科技在轨操作辅助、故障诊断与处置、航天员心理支持、天地协同智能问答为在轨工作提供智能化、专业化支持金融与风控智能投顾、风险评估、反欺诈、信贷审批、市场行情分析提升风险控制能力优化投资决策自动化业务流程个人助理与娱乐日程管理、信息检索、旅行规划、游戏NPC对话生成、写诗作画提升生活和工作效率提供个性化娱乐体验3.2软件开发场景AI Coding给想法插上翅膀随着大模型辅助编码技术发展即使您不会编程也可以借助AICoding把想法快速转换成可运行的代码。这里用一个生活中的案例来看看AI如何给想法插上翅膀从0实现一个微信小程序原型系统基本在小时级别就能完成。3.2.1原始需求儿童生病体温用药症状观测不知宝爸宝妈们在孩子生病发烧期间无比焦虑的场景恨不得时刻能看看体温是不是降下来了用退烧药之后能够持续多久下面是我自己小孩3岁左右一段发烧记录晚上到凌晨我和爱人轮流测量体温用药观察症状变化情况。这份完整版的大模型 AI 学习和面试资料已经上传CSDN朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】3.2.2AICoding助您0编码实现微信小程序首先我没有写过多少前端代码和微信小程序借助AI编程工具可以帮助我们从生活中实际场景出发—到想法—交互图生成—AI辅助架构、数据库、API设计—AI辅助生成前后端代码—原型系统部署调试。完整的小程序界面及实现过程这里不做赘述目前开发体验版本后续文章详细记录下完整的从想法到UED设计及设计编码实现过程。有兴趣的朋友可以关注讨论。4.理解大语言模型工作原理4.1工程vs算法演绎归纳思维差异归纳与演绎是人类认识事物的两种思维方法工程与算法是这两种思维方式的典型应用场景。归纳与演绎在工程和大模型算法中的分布是一种有趣的镜像关系1传统工程立足于演绎的确定性用归纳来应对现实世界的不完美。对于AI研究者而言明白“演绎”框架如算法、架构的突破才能为更强大的“归纳”能力搭建舞台。2大模型算法立足于归纳的概率性用演绎来框架其学习和约束其行为。对于工程师而言明白大模型的“归纳”本质就不会期望它像传统软件一样绝对可靠从而能更好地设计容错和验证流程。4.1.1工程思维演绎为主归纳为辅演绎法核心思想从一般性前提推导出特殊性结论。如果前提为真且推理过程正确则结论必然为真。工程化思维解决问题的方式是演绎推导为主归纳为辅。推理方向从一般到特殊Top-Down。关键词规则、公理、定理、逻辑推导、确定性。应用场景软件设计过程PRD-交互-视觉-架构设计-编码实现、传统工程如土木、机械、电子工程的核心是确定性和可靠性其思维方式高度依赖演绎法。严格的设计规范工程师使用这些定律结合具体需求小前提通过数学计算和逻辑推导设计出桥梁、芯片或电路结论。这个过程是高度演绎的。可预测性因为基于确定性定律工程系统的行为在理论上是可以精确预测的。一座桥能承重多少在建造之前就可以通过计算得知。小结在传统工程中演绎是“设计师”负责基于属性计算和工程设计完成确定性需求的构建归纳是“测试/质检员”和“优化师”负责验证和调优。4.1.2算法思维归纳为主演绎为辅归纳法核心思想从大量特殊性观察中总结出一般性规律或模式。结论是可能为真的但不保证绝对正确。大模型算法解决问题的方式是归纳为主演绎为辅。推理方向从特殊到一般Bottom-Up。关键词模式、趋势、概率、统计、不确定性。应用场景大模型如GPT、BERT等的本质是从数据中学习统计规律其核心范式是归纳法。1学习过程就是归纳大模型不预先输入“语法规则”或“世界知识”大前提。它通过在海量文本数据数十亿个特殊样本中寻找词与词、句与句之间的统计关联如共现频率、注意力权重归纳出一套内部的、隐含的“语言模型”和“世界模型”。这个过程完全是从特殊到一般。2概率性输出模型的输出不是确定的真理而是基于其归纳出的统计分布计算出的最可能的词序列。它是“可能为真”的这正是归纳法的特征。3涌现能力模型表现出的推理、创作等复杂能力并非由程序员显式编码演绎而是从数据中归纳涌现出来的这超出了设计者的精确预期。演绎的辅助角色1算法框架设计Transformer的架构、反向传播算法、损失函数等是研究人员基于数学和计算机科学原理演绎设计出来的。这为归纳学习提供了舞台和规则。2提示工程与思维链用户通过设计精妙的提示Prompt试图引导模型激活其内部归纳出的知识并按照一种类似演绎的逻辑链Chain-of-Thought来生成答案。这是在用演绎的形式去驾驭归纳得到的能力。3规则约束在模型输出端会使用演绎性的规则进行过滤和约束例如内容安全过滤、格式要求等以确保输出符合某些确定性标准。小结在大模型算法中归纳是“学生”负责从数据中学习知识演绎是“教练”和“裁判”负责设计学习方法和设定输出规则。其分布是“归纳为主演绎为辅”。最终最强大的系统将是那些能精巧融合两种范式的系统用演绎法构建可靠框架用归纳法汲取数据智慧从而同时具备严谨性和灵活性。4.2大语言模型工作原理LLM的工作原理可以简单理解为一个“基于概率的超级文本生成器”。虽然它们本质上在于“预测下一个词”并需要大量文本进行训练基于数十亿词汇训练的神经网络不同于传统的人类编写的软件没人完全理解其内部机制。大模型训练到推理的大致过程如下。5.实践如何从0构建大语言模型为什么我们应该构建自己的 LLM从头开始编码一个 LLM 是理解其工作机制和局限性的绝佳练习。同时这也使我们具备了对现有开源 LLM 架构进行预训练或微调的知识以便将其应用于我们特定领域的数据集或任务。简化的构建流程篇幅原因这里不做赘述欢迎关注后面章节深入学习并拆解。海量数据 → Transformer架构 预训练自监督学习 → 基座模型 → 有监督微调SFT 对齐优化RLHF/DPO → 对话/指令模型。6.学习计划为了进一步深入理解大模型工作原理并应用到工程实践中整理如下学习计划从数学理论—编程工具python框架NumPy/Pandas/PyTorch—模型与算法理论知识—工程实践。关键原则1每阶段必须产出可运行代码拒绝纯理论学习280%时间投入工程实践数据处理/部署/监控3成本意识贯穿全程GPU使用/延迟/吞吐量6.1阶段11-2周数学理论vs大模型数学知识是理解大模型原理的必备内功回顾下大学和研究生期间数学知识1线性代数定义了模型的结构和表示方式用矩阵和向量表示一切向量、矩阵和张量运算是数据在模型中流动的语言。线性代数提供了如何用“数字块”来表示和操作“概念”的基本语法。2概率论定义了模型的目标和行为方式预测下一个词的概率分布理解损失函数、模型评估和不确定性的关键。3微积分定义了模型的学习算法如何通过计算梯度来优化矩阵中的参数以更好地完成概率预测的目标。理解梯度、导数这是模型优化的基础。6.2阶段21-2周编程工具与环境搭建工程化环境 建立AI直觉 掌握PyTorch工程化开发具备CV/NLP基础项目能力。掌握python语言及NumPy (科学计算)、Pandas (数据处理)掌握PyTorch。了解Hugging Face (模型中心)。利用阿里云百炼搭建云端环境基于 PAI DSW 准备在线学习环境6.3阶段36-8周模型与算法 (核心大脑)6.3.1机器学习及深度学习基础知识2-3周掌握机器学习、深度学习及NLP基础概念理解回归、分类、过拟合与欠拟合等基本概念。掌握神经网络(NN)、卷积网络(CNN)、循环网络(RNN)等经典结构。监督学习 vs. 无监督学习线性回归、逻辑回归、决策树、SVM等经典算法模型评估方法。1书籍《机器学习》《深度学习》2在线课程李沐《动手学深度学习》PyTorch版学习神经网络基础前向传播、反向传播、CNN、RNN/LSTM、激活函数、优化算法。3实践使用PyTorch练习所学内容搭建简单模型。6.3.2大模型核心技术4-6周重中之重深入理解Transformer架构及大模型的原理、训练和微调所有现代AI大模型如GPT、Llama的基石必须深入理解其自注意力Self-Attention机制、Encoder-Decoder结构、位置编码深度理解Transformer架构论文《Attention Is All You You Need》视频学习解读。1开源项目阅读deepseek、qwen等模型的代码或文档学习GPT、BERT、LLaMA等主流模型的区别与原理掌握预训练Pretraining与微调Fine-tuning概念参数高效微调技术LoRA、Adapter。2资料推荐阿里云大模型认证培训课程李沐《动手学深度学习》。3代码实践尝试实现一个简单的Transformer模块。熟悉预训练(Pre-training)、微调(Fine-tuning)、提示工程(Prompt Engineering)、RLHF(人类反馈强化学习)等核心技术范式。6.4阶段44-6周工程与实践 (落地能力)掌握使用大模型构建应用的核心技能包括RAG、智能体开发等。1RAG检索增强生成理解RAG架构学习使用向量数据库如FAISS、ChromaDB构建知识库问答系统。实践项目搭建一个大模型问答系统阿里云ACP培训实践项目。2AI智能体Agent开发用LangChain构建一个能联网搜索的智能体。在Coze或Dify上搭建一个多模态工作流应用。完成工具调用记忆机制。实践项目结合业务场景构建一个AI智能体应用。6.5考试测评1报名并完成阿里云ACP大模型高级工程师认证拿到证书。 2使用大模型解决一个业务场景面临的实际问题。​最后我在一线科技企业深耕十二载见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事早已在效率与薪资上形成代际优势我意识到有很多经验和知识值得分享给大家也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我整理出这套 AI 大模型突围资料包✅AI大模型学习路线图✅Agent行业报告✅100集大模型视频教程✅大模型书籍PDF✅DeepSeek教程✅AI产品经理入门资料完整的大模型学习和面试资料已经上传带到CSDN的官方了有需要的朋友可以扫描下方二维码免费领取【保证100%免费】​​为什么说现在普通人就业/升职加薪的首选是AI大模型人工智能技术的爆发式增长正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议到全国两会关于AI产业发展的政策聚焦再到招聘会上排起的长队AI的热度已从技术领域渗透到就业市场的每一个角落。智联招聘的最新数据给出了最直观的印证2025年2月AI领域求职人数同比增幅突破200%远超其他行业平均水平整个人工智能行业的求职增速达到33.4%位居各行业榜首其中人工智能工程师岗位的求职热度更是飙升69.6%。AI产业的快速扩张也让人才供需矛盾愈发突出。麦肯锡报告明确预测到2030年中国AI专业人才需求将达600万人人才缺口可能高达400万人这一缺口不仅存在于核心技术领域更蔓延至产业应用的各个环节。​​资料包有什么①从入门到精通的全套视频教程⑤⑥包含提示词工程、RAG、Agent等技术点② AI大模型学习路线图还有视频解说全过程AI大模型学习路线③学习电子书籍和技术文档市面上的大模型书籍确实太多了这些是我精选出来的④各大厂大模型面试题目详解⑤ 这些资料真的有用吗?这份资料由我和鲁为民博士共同整理鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。所有的视频教程由智泊AI老师录制且资料与智泊AI共享相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。资料内容涵盖了从入门到进阶的各类视频教程和实战项目无论你是小白还是有些技术基础的这份资料都绝对能帮助你提升薪资待遇转行大模型岗位。智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌构建起前沿课程智能实训精准就业的高效培养体系。课堂上不光教理论还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作把课本知识变成真本事‌​​​​如果说你是以下人群中的其中一类都可以来智泊AI学习人工智能找到高薪工作一次小小的“投资”换来的是终身受益应届毕业生‌无工作经验但想要系统学习AI大模型技术期待通过实战项目掌握核心技术。零基础转型‌非技术背景但关注AI应用场景计划通过低代码工具实现“AI行业”跨界‌。业务赋能 ‌突破瓶颈传统开发者Java/前端等学习Transformer架构与LangChain框架向AI全栈工程师转型‌。获取方式有需要的小伙伴可以保存图片到wx扫描二v码免费领取【保证100%免费】**​
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

做环卫车怎么做网站wordpress的运用

ncmdumpGUI终极指南:3分钟搞定网易云音乐加密文件转换 【免费下载链接】ncmdumpGUI C#版本网易云音乐ncm文件格式转换,Windows图形界面版本 项目地址: https://gitcode.com/gh_mirrors/nc/ncmdumpGUI 还在为网易云音乐下载的NCM文件无法在其他播…

张小明 2025/12/30 2:07:58 网站建设

app开发搭建织梦网站如何做seo

基于52单片机的楼道智能照明系统设计与实现 第一章 系统概述 传统楼道照明多依赖手动开关或简单声光控,存在长明灯耗电、光线充足时误触发、夜间摸黑找开关等问题。基于52单片机的楼道智能照明系统,以STC89C52单片机为核心,整合人体感应、环境…

张小明 2025/12/30 2:07:56 网站建设

怎么推销自己的网站软件网站开发公司名字

艾尔登法环存档迁移终极指南:5分钟掌握跨设备数据同步 【免费下载链接】EldenRingSaveCopier 项目地址: https://gitcode.com/gh_mirrors/el/EldenRingSaveCopier 还在为《艾尔登法环》的存档迁移而烦恼吗?数百小时的游戏进度、精心培养的角色属…

张小明 2025/12/30 2:07:54 网站建设

南昌网站排名优化价格郑州网站制

从一个异或门开始:手把手构建奇偶校验电路你有没有遇到过这样的情况——数据传着传着就“变味”了?明明发的是0x55,收到的却是0x54。别急,这不一定是你的代码写错了,而是位翻转在作祟。在嵌入式系统、通信链路甚至内存…

张小明 2025/12/30 2:07:52 网站建设

怎么制作网站生成图片新闻热点事件摘抄及评论

开头总结工具对比(技能4) ��AI论文工具的选择需综合考虑处理速度、降重效果和核心优势。实际测试显示,部分工具能在数秒内完成千字文本处理,降重率可达80%以上,同时保持语义连贯性;而…

张小明 2025/12/30 2:07:50 网站建设

外贸网站屏蔽国内ip老鹰网网站建设

第一章:气象数据的 R 语言预测误差分析 在气象数据分析中,准确评估预测模型的性能至关重要。R 语言提供了丰富的统计工具和可视化函数,可用于系统性地分析温度、降水、风速等气象变量的预测误差。通过计算均方误差(MSE&#xff09…

张小明 2025/12/30 3:24:40 网站建设