菏泽网站开发,天津网站搜索引擎优化,景德镇做网站公司,百度关键词快排使用Hopfield神经网络解决旅行商问题(TSP)。这是一种经典的神经网络优化方法。
Hopfield神经网络基础
Hopfield网络是一种递归神经网络#xff0c;具有能量函数#xff0c;能够收敛到局部最小值。
classdef HopfieldNetwork handlepropertiesnum_neurons % 神经元数…使用Hopfield神经网络解决旅行商问题(TSP)。这是一种经典的神经网络优化方法。Hopfield神经网络基础Hopfield网络是一种递归神经网络具有能量函数能够收敛到局部最小值。classdef HopfieldNetworkhandle properties num_neurons% 神经元数量weights% 连接权重矩阵biases% 偏置向量state% 神经元状态endmethodsfunctionobjHopfieldNetwork(num_neurons)obj.num_neuronsnum_neurons;obj.weightszeros(num_neurons,num_neurons);obj.biaseszeros(num_neurons,1);obj.statezeros(num_neurons,1);endfunctionenergycompute_energy(obj)% 计算Hopfield网络的能量函数energy-0.5*obj.state*obj.weights*obj.state-obj.biases*obj.state;endfunctionupdate_neuron(obj,neuron_idx)% 更新单个神经元的状态inputobj.weights(neuron_idx,:)*obj.stateobj.biases(neuron_idx);obj.state(neuron_idx)1/(1exp(-input));% Sigmoid激活函数endfunctionupdate_network(obj,num_iterations)% 更新整个网络foriter1:num_iterationsfori1:obj.num_neurons obj.update_neuron(i);end% 可选每100次迭代显示能量ifmod(iter,100)0energyobj.compute_energy();fprintf(迭代 %d, 能量: %.4f\n,iter,energy);endendendendendTSP问题建模与Hopfield网络映射TSP的Hopfield网络表示classdef TSPHopfieldSolverhandle properties num_cities% 城市数量city_positions% 城市坐标 [N x 2]distance_matrix% 距离矩阵 [N x N]% Hopfield网络参数N% 神经元数量 num_cities × num_citieshopfield_net% Hopfield网络实例% 能量函数权重系数A% 行约束权重B% 列约束权重C% 路径长度权重D% 全局约束权重endmethodsfunctionobjTSPHopfieldSolver(city_positions,A,B,C,D)% 构造函数obj.city_positionscity_positions;obj.num_citiessize(city_positions,1);obj.Nobj.num_cities^2;% 设置能量函数权重obj.AA;obj.BB;obj.CC;obj.DD;% 计算距离矩阵obj.distance_matrixobj.compute_distance_matrix();% 创建Hopfield网络obj.hopfield_netHopfieldNetwork(obj.N);% 构建权重矩阵obj.build_weight_matrix();endfunctiondistancescompute_distance_matrix(obj)% 计算城市间的距离矩阵distanceszeros(obj.num_cities,obj.num_cities);fori1:obj.num_citiesforj1:obj.num_citiesifi~jdistnorm(obj.city_positions(i,:)-obj.city_positions(j,:));distances(i,j)dist;endendendendfunctionbuild_weight_matrix(obj)% 构建TSP的Hopfield网络权重矩阵obj.hopfield_net.weightszeros(obj.N,obj.N);obj.hopfield_net.biaseszeros(obj.N,1);% 四个约束项的权重计算fori1:obj.num_citiesforj1:obj.num_cities neuron_ij(i-1)*obj.num_citiesj;fork1:obj.num_citiesforl1:obj.num_cities neuron_kl(k-1)*obj.num_citiesl;ifneuron_ijneuron_klcontinue;% 跳过自连接end% 约束1: 每个城市只能访问一次 (行约束)ifikj~l obj.hopfield_net.weights(neuron_ij,neuron_kl)...obj.hopfield_net.weights(neuron_ij,neuron_kl)-obj.A;end% 约束2: 每个位置只能有一个城市 (列约束)ifjli~k obj.hopfield_net.weights(neuron_ij,neuron_kl)...obj.hopfield_net.weights(neuron_ij,neuron_kl)-obj.B;end% 约束3: 总路径长度最小化ifjl-1||(jobj.num_citiesl1)ifi~k dist_ikobj.distance_matrix(i,k);obj.hopfield_net.weights(neuron_ij,neuron_kl)...obj.hopfield_net.weights(neuron_ij,neuron_kl)-obj.C*dist_ik;endend% 约束4: 全局激活约束 (确保恰好有N个城市被访问)obj.hopfield_net.weights(neuron_ij,neuron_kl)...obj.hopfield_net.weights(neuron_ij,neuron_kl)-obj.D;endend% 偏置项 (全局约束)obj.hopfield_net.biases(neuron_ij)obj.D*obj.num_cities;endend% 确保权重矩阵对称obj.hopfield_net.weights(obj.hopfield_net.weightsobj.hopfield_net.weights)/2;endfunctioninitialize_network(obj,noise_level)% 初始化网络状态ifnargin2noise_level0.1;end% 随机初始化加入小扰动避免对称性base_state0.5*ones(obj.N,1);noisenoise_level*(rand(obj.N,1)-0.5);obj.hopfield_net.statebase_statenoise;% 确保状态在[0,1]范围内obj.hopfield_net.statemax(0,min(1,obj.hopfield_net.state));endendend网络求解与结果解码function[best_tour,best_distance,convergence_info]solve_tsp_hopfield(solver,max_iterations,annealing_schedule)% 使用Hopfield网络求解TSP% 输入:% solver: TSPHopfieldSolver实例% max_iterations: 最大迭代次数% annealing_schedule: 模拟退火计划 (可选)% 输出:% best_tour: 最优路径% best_distance: 最优路径长度% convergence_info: 收敛信息ifnargin3annealing_schedule(iter)1.0;% 默认无退火end% 初始化网络solver.initialize_network();% 记录收敛信息convergence_info.energyzeros(max_iterations,1);convergence_info.validityzeros(max_iterations,1);best_energyinf;best_statesolver.hopfield_net.state;foriter1:max_iterations% 应用模拟退火 (如果提供)current_tempannealing_schedule(iter);% 更新网络old_statesolver.hopfield_net.state;fori1:solver.N% 计算输入inputsolver.hopfield_net.weights(i,:)*solver.hopfield_net.state...solver.hopfield_net.biases(i);% 带温度的sigmoid函数solver.hopfield_net.state(i)1/(1exp(-input/current_temp));end% 记录能量energysolver.hopfield_net.compute_energy();convergence_info.energy(iter)energy;% 检查解的有效性[is_valid,tour_length]check_solution_validity(solver);convergence_info.validity(iter)is_valid;% 更新最优解ifenergybest_energyis_valid best_energyenergy;best_statesolver.hopfield_net.state;end% 显示进度ifmod(iter,100)0fprintf(迭代 %d/%d, 能量: %.4f, 有效解: %d, 路径长度: %.2f\n,...iter,max_iterations,energy,is_valid,tour_length);end% 检查收敛ifiter50check_convergence(convergence_info.energy,iter)fprintf(在迭代 %d 收敛\n,iter);break;endend% 恢复最优状态并解码solver.hopfield_net.statebest_state;[best_tour,best_distance]decode_solution(solver);convergence_info.energyconvergence_info.energy(1:iter);convergence_info.validityconvergence_info.validity(1:iter);endfunction[is_valid,tour_length]check_solution_validity(solver)% 检查当前网络状态是否表示有效的TSP解% 有效解条件: 每行恰好一个1每列恰好一个1% 将网络状态重塑为城市×位置的矩阵state_matrixreshape(solver.hopfield_net.state,...solver.num_cities,solver.num_cities);% 二值化处理binary_matrixstate_matrix0.5;% 检查行约束 (每个城市只访问一次)row_sumssum(binary_matrix,2);row_validall(row_sums1);% 检查列约束 (每个位置只有一个城市)col_sumssum(binary_matrix,1);col_validall(col_sums1);is_validrow_validcol_valid;% 如果有效计算路径长度ifis_valid tourdecode_tour_from_matrix(binary_matrix);tour_lengthcompute_tour_length(tour,solver.distance_matrix);elsetour_lengthinf;endendfunction[tour,distance]decode_solution(solver)% 从网络状态解码TSP路径state_matrixreshape(solver.hopfield_net.state,...solver.num_cities,solver.num_cities);% 方法1: 直接取最大值[~,tour]max(state_matrix,[],2);% 验证tour是否包含所有城市iflength(unique(tour))~solver.num_cities% 方法2: 使用匈牙利算法处理有冲突的情况tourresolve_conflicts(state_matrix);enddistancecompute_tour_length(tour,solver.distance_matrix);endfunctiontourresolve_conflicts(state_matrix)% 使用类似匈牙利算法的方法解决冲突[num_cities,~]size(state_matrix);% 复制状态矩阵assignment_matrixstate_matrix;tourzeros(num_cities,1);forstep1:num_cities% 找到最大值[max_val,max_idx]max(assignment_matrix(:));ifmax_val0break;end[city,position]ind2sub(size(assignment_matrix),max_idx);% 分配tour(city)position;% 清除该行和该列assignment_matrix(city,:)0;assignment_matrix(:,position)0;end% 处理未分配的城市unassignedfind(tour0);available_positionssetdiff(1:num_cities,tour(tour0));fori1:length(unassigned)ifilength(available_positions)tour(unassigned(i))available_positions(i);else% 随机分配剩余位置tour(unassigned(i))randi(num_cities);endendendfunctiontour_lengthcompute_tour_length(tour,distance_matrix)% 计算路径长度num_citieslength(tour);tour_length0;fori1:num_cities from_citytour(i);to_citytour(mod(i,num_cities)1);tour_lengthtour_lengthdistance_matrix(from_city,to_city);endendfunctionconvergedcheck_convergence(energy_history,current_iter)% 检查能量是否收敛ifcurrent_iter20convergedfalse;return;endwindow_sizemin(10,current_iter);recent_energiesenergy_history(current_iter-window_size1:current_iter);energy_stdstd(recent_energies);convergedenergy_std1e-6;end完整的TSP求解示例% 主程序使用Hopfield网络解决TSP问题clear;clc;%% 生成测试数据rng(42);% 设置随机种子% 生成随机城市坐标num_cities10;city_positions100*rand(num_cities,2);fprintf(生成 %d 个城市的TSP问题\n,num_cities);%% 设置Hopfield网络参数% 能量函数权重系数需要仔细调整A500;% 行约束权重B500;% 列约束权重C200;% 路径长度权重D200;% 全局约束权重% 创建TSP求解器tsp_solverTSPHopfieldSolver(city_positions,A,B,C,D);%% 设置模拟退火计划% 温度衰减函数cooling_schedule(iter)max(0.01,1.0*exp(-iter/500));%% 求解TSP问题max_iterations2000;fprintf(开始Hopfield网络优化...\n);[best_tour,best_distance,convergence_info]solve_tsp_hopfield(...tsp_solver,max_iterations,cooling_schedule);fprintf(优化完成\n);fprintf(最优路径长度: %.2f\n,best_distance);%% 可视化结果figure(Position,[100,100,1200,400]);% 子图1: 城市分布和最优路径subplot(1,3,1);plot(city_positions(:,1),city_positions(:,2),o,MarkerSize,8,...MarkerFaceColor,red,MarkerEdgeColor,black);hold on;% 绘制路径tour_positionscity_positions(best_tour,:);tour_positions[tour_positions;tour_positions(1,:)];% 回到起点plot(tour_positions(:,1),tour_positions(:,2),b-,LineWidth,2);% 标注城市编号fori1:num_citiestext(city_positions(i,1)2,city_positions(i,2)2,...sprintf(%d,i),FontSize,10,FontWeight,bold);endtitle(sprintf(TSP最优路径 (长度: %.2f),best_distance));xlabel(X坐标);ylabel(Y坐标);grid on;axis equal;% 子图2: 能量函数收敛过程subplot(1,3,2);plot(convergence_info.energy,LineWidth,2);xlabel(迭代次数);ylabel(能量函数值);title(Hopfield网络能量收敛);grid on;% 子图3: 解的有效性subplot(1,3,3);plot(convergence_info.validity,LineWidth,2);xlabel(迭代次数);ylabel(解的有效性 (1有效));title(解的有效性演化);ylim([-0.1,1.1]);grid on;%% 参数敏感性分析fprintf(\n 参数敏感性分析 \n);% 测试不同的权重组合weight_combinations[500,500,200,200;% 基准800,800,100,100;% 强约束弱路径200,200,500,500;% 弱约束强路径600,600,300,300% 平衡];resultscell(size(weight_combinations,1),1);fori1:size(weight_combinations,1)weightsweight_combinations(i,:);fprintf(测试权重组合 %d: A%.0f, B%.0f, C%.0f, D%.0f\n,...i,weights(1),weights(2),weights(3),weights(4));test_solverTSPHopfieldSolver(city_positions,...weights(1),weights(2),weights(3),weights(4));[test_tour,test_distance,~]solve_tsp_hopfield(...test_solver,1000,cooling_schedule);results{i}struct(...weights,weights,...tour,test_tour,...distance,test_distance);fprintf( 路径长度: %.2f\n,test_distance);end%% 与传统算法比较fprintf(\n 与最近邻算法比较 \n);% 最近邻算法nn_tournearest_neighbor_tsp(city_positions,tsp_solver.distance_matrix);nn_distancecompute_tour_length(nn_tour,tsp_solver.distance_matrix);fprintf(最近邻算法路径长度: %.2f\n,nn_distance);fprintf(Hopfield网络改进: %.2f%%\n,...(nn_distance-best_distance)/nn_distance*100);functiontournearest_neighbor_tsp(city_positions,distance_matrix)% 最近邻算法求解TSPnum_citiessize(city_positions,1);unvisitedtrue(num_cities,1);tourzeros(num_cities,1);% 从随机城市开始current_cityrandi(num_cities);tour(1)current_city;unvisited(current_city)false;fori2:num_cities% 找到最近的未访问城市distancesdistance_matrix(current_city,:);distances(~unvisited)inf;[~,nearest_city]min(distances);tour(i)nearest_city;unvisited(nearest_city)false;current_citynearest_city;endend高级改进技术1. 自适应参数调整functionadaptive_weightsadaptive_weight_adjustment(solver,validity_history)% 根据解的有效性自适应调整权重recent_validityvalidity_history(end-min(10,length(validity_history))1:end);validity_ratemean(recent_validity);ifvalidity_rate0.3% 提高约束权重adaptive_weights.Asolver.A*1.2;adaptive_weights.Bsolver.B*1.2;adaptive_weights.Csolver.C*0.9;elseifvalidity_rate0.8% 提高路径优化权重adaptive_weights.Asolver.A*0.9;adaptive_weights.Bsolver.B*0.9;adaptive_weights.Csolver.C*1.2;elseadaptive_weights.Asolver.A;adaptive_weights.Bsolver.B;adaptive_weights.Csolver.C;endadaptive_weights.Dsolver.D;end2. 多起点优化function[global_best_tour,global_best_distance]multi_start_hopfield_tsp(city_positions,num_starts)% 多起点Hopfield网络优化global_best_distanceinf;global_best_tour[];forstart1:num_startsfprintf(多起点优化: %d/%d\n,start,num_starts);% 每次使用不同的随机初始化solverTSPHopfieldSolver(city_positions,500,500,200,200);solver.initialize_network(0.2*start);% 不同的噪声水平[tour,distance,~]solve_tsp_hopfield(solver,1000);ifdistanceglobal_best_distance global_best_distancedistance;global_best_tourtour;fprintf(发现更好解: %.2f\n,distance);endendend参考代码 hopfield神经网络解决旅行商问题www.youwenfan.com/contentcsn/82237.html关键要点与优化建议优势并行处理神经网络天然适合并行计算全局搜索能够跳出局部最优解生物启发基于大脑工作原理的计算模型挑战与解决方案参数敏感需要仔细调整权重系数收敛性可能收敛到无效解计算复杂度神经元数量为O(N²)实用技巧参数调整通常 A ≈ B C D模拟退火结合退火策略提高全局搜索能力多起点多次运行选择最优解后处理对最终解应用2-opt等局部优化Hopfield神经网络为TSP问题提供了一种独特的解决视角虽然在实际应用中可能不如专门的组合优化算法高效但在理论研究和特定场景下仍具有重要价值。